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We formulate the Hamiltonian version of contour dynamics for a model of axially symmetric, equally
vortexed jet streams with a free boundary. In particular, we study dominant structural elements which appear
in strongly perturbed jet streams at the stage of their decay. The model produces solutions with compact
support which can describe such dominant structures, called compactons. Evolution of the compactons can lead
to their collapse which virtually does not deform the shape, but gradually intensifies the vortex sheet at the
boundary according to the law �t0− t�−1, where t0 is the collapse time.
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I. INTRODUCTION

Physics of high density energies, such as astro -or geo-
physics, often employ models studying behavior of the mov-
ing boundaries where fluid density experiences a noncontinu-
ous jump. Indeed, in the middle of the past century E. Fermi
and J. von Neumann extensively studied instability at the
boundary of two fluids in connection with the implosive
method to nuclear blast. The problem involved instability
arising when heavy fluid is decelerated by the lighter one. As
Fermi noted, this problem is physically equivalent to the one
where heavy medium is located above the light one in the
uniform gravity field �1�. This instability was explored in the
framework of the simplest model where only the density
jump occurred �2–6�.

One can envision more complex models which study the
dynamics of instability of the boundaries with jumps not
only of media density, but also of other field variables such
as vorticity. The existence of such boundaries leads to vari-
ous forms of hydrodynamic instabilities �7� which in the
nonlinear stages of their development cause disruption of
fluid layers and formation of localized spatial structures.
These structures emerge on the backdrop of turbulent fluc-
tuations as regions of coherent large-scale flow of the fluid
with high concentration of vorticity.

These striking phenomena can be observed in the nature
around us. Occasionally, stratified flows with very large Rey-
nolds number �for example, in atmospheres and oceans�
spontaneously organize into large scale vortex structures
such as thermics, jets, bubbles, etc. However, the traditional
description of hydrodynamic mixing in stratified media in
terms of diffusion is imprecise and does not provide infor-
mation about such a substantial feature of layered medium
mixing as the very existence of these large dominant struc-
tures.

One of the approaches to studying the stratified fluid dy-
namics is to employ idealized models where the surfaces of

constant properties move with the fluid. Then the evolution
of the system can be described in terms of variables defining
only the boundary, while ignoring the description of the rest
of the fluid. This approach is known as the contour dynamics
method �CDM� �8–18�. A classical example of its application
is the model of surface waves on an incompressible fluid.

In the studies where the hydrodynamic system is weakly
perturbed and the governing equations can be solved using
the perturbation theory, the spectral mode concept may de-
scribe the development of instability in principle, but only at
the initial stage of the evolution process. However, when the
instability develops and the magnitude of field perturbations
becomes comparable with the characteristic value of the ba-
sic state, the traditional spectral mode concept becomes in-
applicable and requires transitioning from the analysis of the
evolution of separate harmonics to the analysis of dominant
structures which describe the general picture of the nonlinear
mixing process prior to the beginning of turbulence. Thus
different approaches should be employed beyond weak
nonlinearity.

For the above-mentioned reasons, development of new
analytical methods and construction of adequate models de-
scribing such large-scale turbulent structures, are crucial for
understanding of mixing processes. To date, many numerical
and analytical studies of the dominant structures have been
performed �see Ref. �7� and references therein�. However,
since precise study of such structures requires laborious solv-
ing of complex systems of nonlinear equations, it is often
more effective to use simplified models in order to capture
the tendency of the processes �6�. In fact, instead of massag-
ing numerically calculated details of the vortex motion, it is
more important to first answer the questions of whether co-
herent structures may form under specific conditions. And if
so, what are the key features of their evolution?

The present article focuses on studying the large-scale
vortex structures in the framework which neglects all dissi-
pative processes. Such idealization is justified when, on the
one hand, the characteristic spatial scale is greater than the
scale of turbulent pulsations, and on the other hand, when
direct molecular viscosity can be neglected. Many real-life
atmospheric or oceanic flows, including turbulent ones, fit
such description. In this framework the true effects of vis-
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cosity and turbulence on the vortex structures may be cap-
tured via their impact on the evolution of the mean back-
ground flow. For example, these effects can lead to formation
of a boundary layer, or to flattening of the turbulent velocity
profile of the fluid flow in a tube.

The assumption that the vortex structures are large-scale
permits a series of crucial simplifications even for the fields
which continuously distributed in space. First, if limited to
two-dimensional flows, we can approximate the medium
which has a continuous profile of the field variable such as
vorticity, with a stratified model where each layer has con-
stant vorticity. Since large-scale flows are only weakly sen-
sitive to the fine structure of the profile, such an approxima-
tion is valid. Consequently, even with a crude model having
just a few layers that reflect only the general structure of the
real profile, such an approach should reveal the qualitative
essence of the large-scale dynamics. Second, stratified mod-
els present an opportunity to describe the flow dynamics in
the framework of spatially one-dimensional nonlinear
integro-differential equations in terms of the boundaries de-
fining the contours of vortex structures �i.e., using the con-
tour dynamics method mentioned above�.

To derive the contour dynamics equations, it is advanta-
geous to use the Hamiltonian description which not only
provides the means for assessing how universal the approxi-
mation method may be, but also helps minimize the technical
efforts of solving the problem. Indeed, in this framework the
object of all approximation procedures is not the set of many
equations, but a single variable—the Hamiltonian. Moreover,
in many circumstances it is possible to step beyond the weak
nonlinearity in terms of the magnitude of perturbations. The
required approximation procedure assumes not the smallness
of deviation of dynamic variables from the mean, but the
smallness of contributions associated with their spatial de-
rivatives. Therefore, the power series are formed not based
on the perturbation magnitudes, but based on the spatial de-
rivatives of the field variables. The lowest order of the per-
turbation theory preserves in the Hamiltonian only the small-
est terms with respect to these derivatives.

Finally, our approach was partially inspired by the re-
markable papers of Fermi �3–5� in which he examined sur-
face instability of heavy, incompressible fluids during the
nonlinear stage of instability development when the ampli-
tude of wave perturbation becomes comparable with the
characteristic space scale of the wave. Because, as mentioned
above, this problem was important for nuclear implosion, it
was studied at one time in great detail. Fermi proposed an
elegant method to describe the key features of the process
using a very simplified model. This method can be referred
to as the method of trial functions. The essence of the ap-
proach was to use the principle of the least action for a fluid
motion possessing the continual number of degrees of free-
dom and to parameterize the field Lagrangian into the action
integral using a small number of parameters �generalized co-
ordinates� for which the Lagrangian or Hamiltonian equa-
tions are deduced from the extremum of the action.

In the spirit of the idea of Fermi, we attempt to analyze
the general picture of large vortex structures evolution. Spe-
cifically, we study the dominant structures appearing in axi-
ally symmetric, equally vortexed, free-bounded jet streams.

We intend to show that the strongly perturbed jet of the
equally vortexed fluid with the Attwood number close to 1
�large density contrast at the interface� can be broken into
separate vortex blobs called compactons. Visually the model
can be described as a jet of vortexed fluid which due to the
developed instability eventually breaks down into vortex
“droplets.” Moreover, our numerical simulations �Sec. IV�
show that these droplets line up according to their size. The
line order starts with the largest compacton and concludes
with the smallest �as is with solitons�.

In this article, we focus on a rather narrow range of the-
oretical problems: How to apply the Hamiltonian approach
to a system with continual number of degrees of freedom,
how to construct the compacton solutions describing the
dominant structures, and how to qualitatively describe the
mechanism of their stability or instability. In the followup
paper we will provide a more complete analysis of the com-
pacton collapse and the numerical simulation of how the
dominant structures interact.

This article is organized as follows. In Sec. II we discuss
the model setup and formulate the governing nonlinear equa-
tions in curvilinear coordinates. In Sec. III we consider the
axially symmetric model with free boundary. Numerical cal-
culations showing the evolution of an initial perturbation is
given in Sec. IV. The properties of the obtained localized
solutions, solitons and compactons, are considered in Sec. V.
The problem of compacton instability is considered in Sec.
VI. This problem is of particular significance because com-
pacton can collapse, i.e., form a singularity in a finite time.
This collapse phenomenon can be manifested as a permanent
self-constriction of the localized disturbance which must be
accompanied by the infinite increase of its amplitude at the
fixed integrals of motion. In Sec. VII we analyze the occur-
rence of such a collapse due to generation of an axisymmet-
ric mode in the vortex sheet. The self-similar collapse sce-
nario is discussed in Sec. VIII. In Sec. IX we summarize our
results. Appendixes A–D list additional relevant data that we
hope are useful for the most inquisitive readers.

II. GOVERNING EQUATIONS

A. General consideration

The well-known evolution equations of continuity and
momentum for a perfect incompressible inhomogeneous fluid
are

�t� + vk�k� = 0, �t�i + �k�vi�k� = − �ip . �1�

Here, density field � and momentum field �=�v are the
dynamical variables of the problem, v is the flow velocity,
div v=0, and p is pressure.

Equation �1� can be written �see Appendix A� in the
Hamiltonian form with local functional Poisson brackets
��i ,�k�� , �� ,�k��, and �� ,���=0 as

�t� = ��,H� =� dx����,���
�H
���

+ ��,� j��
�H
�� j�

	 ,
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�t�i = ��i,H� =� dx����i,���
�H
���

+ ��i,� j��
�H
�� j�

	 . �2�

Hereinafter, summation over repeated indices is implied and
primed field variables represent the dependence on the
primed spatial coordinates. Hamiltonian H in Eq. �2� for the
inhomogeneous incompressible fluid is given by

H =� dx
�2

2�
= H��,�� �3�

and is congruent to kinetic energy of the system expressed in
terms of dynamical variables � and �.

In contrast with the traditional methods, the Hamiltonian
approach provides not only the ability to adequately select
dynamic variables, but also to control the internal symme-
tries, and consequently, assure dynamical identity of the
original and approximate problems. As known, the informa-
tion about the internal symmetries of the system is contained
by the Poisson brackets. The Hamiltonian of the system, in
this sense, is the secondary quantity which fixes the hyper-
surface in the phase space of dynamic variables. The dy-
namic trajectory of the system lies on this hypersurface.
Thus, to prevent losses or distortions of the internal symme-
try properties, only the approximations that preserve the
Poisson brackets should be selected. Only the Hamiltonian is
subjected to the approximation procedure.

Many interesting problems of classical hydrodynamics
possess certain spatial symmetry. For this reason, using con-
ventional curvilinear coordinate systems may be more natu-
ral than using the Cartesian one. For instance, an evolution
of an axially symmetrical jet is natural to be described in
cylindrical, i.e., curvilinear coordinates. Also it is more com-
fortable sometimes to work not with the density and velocity
as field variables, but with the density � and vorticity field
�=curl�
���.

Let us summarize that the system of Poisson brackets
which describes the motions of inhomogeneous incompress-
ible fluid is formulated in terms of density field � and vor-
ticity field �=curl�, has the following form in the system of
arbitrary curvilinear coordinates �= ��1 ,�2 ,�3�:

��,��� = 0, �4�

��,��k� = eknmg−1/2�m��ng−1/2� , �5�

��i,��k� = eipjej lne
kmng−1/2�p�l�mg−1/2� . �6�

For the details of derivations we refer the reader to works
�15,16� and Appendixes C and D. Hereinafter, summation
over repeated indices is implied. Additionally, �=���−��� is
the Dirac delta function, g is the determinant of the metric
tensor, �i=� /��i is the differentiation operator, eikj 
eikj is
the unit antisymmetric tensor �Levi-Civita symbol�, and �i

are the contravariant components �21� of the vector �, that
are related to the covariant components vn of the hydrody-
namic velocity as

�i = g−1/2eikn�k�vn. �7�

The Poisson brackets given by Eqs. �4�–�6� present the initial
point for the construction of various versions of the Hamil-
tonian contour dynamics in two-dimensional streams.

It is convenient to study such streams in the correspond-
ing system of curvilinear coordinates with the following
properties: �3 coordinate lines are directed along the vortex
lines, and �1 and �2 coordinate lines lie on �3=const station-
ary surfaces and form the system of surface coordinates. In
such a coordinate system, we suppose that all fields are func-
tions of only the surface coordinates �= ��1 ,�2�, and that vec-
tor vorticity field � has only one component �3=�, which
according to Eq. �7� satisfies relation

� = e�	g−1/2���v	, �8�

where e�	 is the unit antisymmetric tensor.
In terms of the scalar fields, � and �, the Poisson brackets

given by Eqs. �4�–�6� are reduced to the simpler form �see
Appendix B�

��,��� = 0, �9�

��,��� = e	�g−1/2����	g−1/2� , �10�

��,��� = e	�g−1/2����	g−1/2� . �11�

In publications �8–14� �see also references therein, and the
Appendixes of this article� it was noted that certain important
patterns of large-scale two-dimensional dynamics of an in-
compressible, inviscid fluid can be modeled as patches of
constant vorticity and density. In this case, the description of
vortex evolution can be reduced to the description of dynam-
ics of discontinuity boundaries, or contours, while the rest of
fluid can be ignored. Despite the fact that this approximation
seems too strict from a physical viewpoint, comparisons be-
tween numerical contour dynamics and conventional numeri-
cal simulations have shown surprisingly good agreement
with flows modeled by distributed vorticity at very high Rey-
nolds number �see �8–14��. It appears that many general as-
pects of quasi-inviscid flows can be reproduced using the
contour dynamics with a moderate number of vorticity and
density levels. One of the advantages of this approach is the
significant reduction of the number of dynamic variables and
the running time needed for numerical simulations. Because
contour dynamics equations are strongly nonlinear and non-
local, a numerical approach to their solving is required. Ana-
lytical versions of contour dynamics have been much more
narrowly used because their effectiveness depends greatly on
the choice of dynamical variables. Also, the method of con-
tour parameterization is frequently nontrivial and requires
special considerations. It is worth pointing out that here the
abilities of traditional formulations are much more limited.
The requirement of physical obviousness, which is common
in traditional formulations when selecting dynamical vari-
ables, does not guarantee the visual simplicity of the evolu-
tion of these variables in the phase space. Consequently, the
methodology for formulating the problem should be
flexible—on the one hand, permitting easy transitions from
one phase space to another, and on the other hand, providing
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easy controls when selecting models to be used in asymptotic
approximations. The Hamiltonian version of the contour dy-
namics satisfies all these requirements.

Various Hamiltonian versions of contour dynamics for
plane and axially symmetric models have been developed
and discussed in the works �15–18�.

Let us formulate the key parameters of the model.
For simplicity, let us consider �see Fig. 1� two regions G+

and G− that are separated by interface C on both sides of
which density � and vorticity 
=g−1/2��1v2−�2v1� attain
constant values. Using signs � and � for the variables in
regions G+ and G−, respectively, we write the density and
covariant components of the hydrodynamic momentum in
the form of decompositions

� = �+�+ + �−�−, �12�

�v� = �+v�
+�+ + �−v�

−�−. �13�

Here, �+ and �− are mutually complimentary substantive
characteristic functions

�± = 1, if � � G±,

�± = 0, if � � G±,

which satisfy relations

�+ + �− = 1, �+�− = 0, �t�
± + v����± = 0.

The substitution of Eq. �13� into Eq. �8� leads to expression

� = 
+�+�+ + 
−�−�− + 
 , �14�

where


 = e�	g−1/2��+v	
+ − �−v	

−����+ �15�

describes the part of momentum vorticity density that is con-
centrated on the contour. It is easy to see that even when
velocity distribution is continuous, v	

+=v	
− at the contour, and

value 
�0 if density jumps at the contour.

B. Axisymmetric stream

In the following discussion we consider only axisymmet-
ric equally vortexed streams without a swirl �i.e., fluid rota-
tion around the axis is absent�. The simplest example of such
streams is a round jet with a parabolic velocity profile. Hills
vortex �14,22� is another less trivial example.

The natural coordinates for studying axisymmetric two-
dimensional streams are the cylindrical coordinates, x ,r, and

�; axial coordinate x and radial coordinate r serve as the
surface coordinates �1 and �2, whereas � is the azimuth co-
ordinate whose coordinate lines coincide in direction with
the vortex lines.

Assuming that the interface is specified by r=��x , t�
�where � describes the shape of the interface�, we take the
substantive characteristic function �+ in the form of Heavi-
side step function

�+ = ��r − �� ,

i.e., ��z�=1 for z�1 and ��z�=0 for z�0. Because of this
choice Eqs. �12� and �14� can be rewritten in the form

� = �− + ��+ − �−���r − �� , �16�

� = 
−�− + ���r − �� + �r−1��� − r� , �17�

where �=�+
+−�−
− and � is the jump of the tangential
momentum component on the contour; i.e.,

� = − ��x��+v2
+ − �−v2

−� + ��+v1
+ − �−v1

−��r=�. �18�

Relations �16� and �17� allow us to easily recalculate the
Poisson brackets for variables �� ,�� to the Poisson brackets
for variables �� ,�� specified on the contour. After substitut-
ing Eqs. �16� and �17� into the system of Eqs. �9�–�11� and
solving it under the assumption that �+−�−�0, i.e., in the
presence of the density jump, we obtain

��,��� = 0, �19�

���,��� = − �x��x − x�� , �20�

��,��� = − ��x��x − x�� . �21�

If ��0, transformation

� = � − ��2/2, �22�

reduces the brackets given by Eqs. �19�–�21� to the brackets

��,��� = 0, �23�

��,��� = ��x��x − x�� , �24�

��,��� = − ��x��x − x�� . �25�

These brackets correspond to the equations of motion

�t� = ��x
�H

��
, �t� = − ��x

�H

��
, �26�

which conserve not only the Hamiltonian H, but also the
integrals

P =
1

2
� dx��2 − �2� , �27�

T1 =� dx �, T2 =� dx � . �28�

If the conservation of the integral given by Eq. �27�, which
serves as the vortex momentum, is caused by the transla-

ζ1

ζ2

G+

G−

C
ω+

�−

�+

ω−

FIG. 1. Model of the equally vortexed regions with the free
boundary.
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tional invariance of the Hamiltonian H, then T1 and T2 are
annihilators of brackets �23�–�25� and, hence, are conserved
for an arbitrary Hamiltonian H. This means that the Hamil-
tonian in such models is determined up to linear terms that
do not affect the equations of motion.

Now let us express Hamiltonian H in terms of variables �
and � by considering the boundary value problem. For axi-
symmetric streams of incompressible fluid that are consid-
ered here, this problem is formulated in terms of the Stokes
stream function, �=�+�++�−�−.

The incompressibility condition, described as div v=0 or
as �xv1+r−1�rrv2=0 in cylindrical coordinates, allows us to
introduce stream function �. After taking into account rela-
tions

v1 = − r−1�r�, v2 = r−1�x� , �29�

which relate the corresponding velocity components to the
stream function �, and using Eqs. �8� and �18�, we arrive at
the boundary value problem

r−1��xr
−1�x + �rr

−1�r��± = 
±, �30�

���x�x − �r���−�− − �+�+��r=� = �� . �31�

The first expression, Eq. �30�, is the azimuthal covariant
component of vorticity which is supposed to be constant. The
stream function is bounded on axis r=0. The boundary con-
dition in Eq. �31� follows from the existence of the vortex
sheet of intensity � on the boundary ��x , t�. Let us note that
the existence of the vortex sheet is an imperative attribute of
contact frontier dynamics, i.e., ��0 when the boundary
separate two fluids with different density.

When necessary, this boundary value problem is supple-
mented by the conditions of stream function continuity at the
inner interfaces and its constancy at the outer interfaces.

III. AXISYMMETRIC MODEL WITH FREE
BOUNDARY

Since the presence of free boundary is equivalent to con-
dition �+=0, we will consider the fluid with unit density
�−=1 and vorticity 
−=
 and present only inside the region
G−=G. Similar models of streams, but without density
jumps, were considered in Ref. �17,18�. Assuming that the
problem contains characteristic spatial scale L, we introduce
corresponding time scale T= �
L�−1 and dimensionless de-
pendent and independent variables.

Here, we shall restrict our study to axially symmetric
vorticity-homogeneous flows with free boundary only. In
other words, it is supposed �see Fig. 2� that the fluid of unit
density is concentrated only inside domain G restricted by
contour C on which the unit jump of density takes place.

Then the equations of motion �26� take form

�t� = − �x
�H

��
, �t� = �x

�H

��
. �32�

When calculating the Hamiltonian H, we start from the ki-
netic energy integral

E =
1

2
�

0

�

dr r−1
„��r��2 + ��x��2

…

= −
1

2
� dx dr„r��� − r�� + ����� − r�… + ¯ = H + ¯

�33�

with H matches up to terms that do not affect the equations
of motion �32�. For this reason, the Hamiltonian H can have
any sign, even though E is a positive finite quantity.

According to Eqs. �30� and �31�, the following boundary
value problem exists for the stream function �− �in terms of
which the kinetic energy E is expressed�:

��xr
−1�x + �rr

−1�r��− = r , �34�

��x�x − �r���−�r=� = �� , �35�

which is supplemented by the gauge condition on the axis,
��−�r=0=0.

Hereinafter we use the method of pseudo-differential op-
erators �17–20�.

Following this method, a general solution of the boundary
value problem specified by Eqs. �34� and �35� is sought in an
operator form

��x,r,t� =
1

8
r4 + rI1�r��A�x,t� . �36�

The structure of Eq. �34� serves as a prompt. The first term in
Eq. �36� is a partial solution to Eq. �34�: It describes a non-
perturbed state of the equally vortexed jet. The second term
describes the perturbation of the jet. Here, A=A�x , t� is a
function of time t and axial spatial coordinate x; expression
I1�r�� is the modified Bessel’s function of the first order
defined by the standard expression Is�r��= i−sJs�ir��. The ar-
gument of the modified Bessel’s operator function in Eq.
�36� is the product of the transversal coordinate r on the

operator �. This operator defined by expression �=�xĤ,

where operator Ĥ is the so-called Hilbert transformation:

Ĥf�x� =
1

�
� dx�

f�x��
x − x�

.

x

ρ

G

C

ω

FIG. 2. Sketch of the axisymmetric equally vortexed stream
with the free boundary.
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The remarkable properties of the operators Ĥ, and � are

the identities Ĥ2=−1, Ĥ+=−Ĥ, �2=−�x
2, and �+=�. It means

that operator Ĥ, when applied twice to a function of x, mul-
tiplies the function by minus 1, and that operator � applied to
eikx multiplies the exponent by �k�, and so forth. Therefore,
more complex operator combinations can be constructed and
used.

Let us restate briefly some useful properties �for more
details, see Ref. �18��.

The action of the pseudo-differential operator F�r ,�� on a
function f�x� is equivalent to the integral transformation

F�r,��f�x� =
1

2�
� dx1dk F�r, �k��eik�x1−x�f�x1� �37�

and is unambiguously determined by the function F�r , �k��
called the symbol of the pseudo-differential operator.

If the operator function F���x� ,�� depends on two non-
commutative operators, it is necessary to follow the ordering
rule: the operators act in the order from the right to the left.
This rule allows us to distinguish conjugated operators
F���x� ,�� and F�� ,��x�
F+���x�� ,��. Operator F���x� ,��
indicates that the first to act is operator �, and the operator of
multiplication by ��x� acts second. Operator F�� ,�� implies
conversely that the operator of multiplication by ��x� acts
first, and operator � acts second. For this reason, it should be
noted that operators F���x� ,�� and F+���x� ,�� are charac-
terized by different integral transformations

F���x�,��f�x� =
1

2�
� dx1dk F���x�, �k��eik�x1−x�f�x1� ,

�38�

F��,��x��f�x� =
1

2�
� dx1dk F���x1�, �k��eik�x1−x�f�x1� .

�39�

The advantage of the method of pseudo-differential opera-
tors is that operator functions can be transformed and sim-
plified in analytical calculations as regular functions. For ex-
ample, operator functions can be developed in the
perturbation series with respect to their operator arguments.

Now let us return to our key derivations.
Direct substitution of expression �36� into the boundary

condition given by Eqs. �35� yields the following equation
with respect to function A�x , t�

�xI0����ĤA = − � . �40�

After some algebra and when taking into account Eqs.
�36�, �22�, and �40�, Hamiltonian �33� takes form

H = −
1

2
� dx
 1

2 � 4!
�4��2 − 3� +

1

8
��2��2 − 2�

+ �2I2����
1

�
A + ��I1����A� . �41�

Here, we omit the terms that do not affect the equations of
motion.

It should be reminded that the shape of surface ��x , t� and
function A�x , t� must be expressed in the Hamiltonian via
variables ��x , t� and ��x , t�. Hamiltonian �41� contains two
types of terms: Those that are determined by the magnitude
of perturbation � and those that depend on the spatial deriva-

tive �x̂ folded in operator �.
The simplification that follows will be based on the addi-

tional assumptions about the relationship between nonlinear

��� and dispersion ��x̂� effects. Let us assume that the con-
sidered perturbations are such that the contribution of the
terms with spatial derivatives of higher orders may be ne-
glected. The small parameter used to form the series is the
ratio of the perturbation magnitude �which is comparable to
the jet radius� to the characteristic x scale of the perturbation.
This approximation is known as the nonlinear dispersion ap-
proximation �23,24�.

We will seek the solution of pseudo-differential equation
�40� as a power series with variable �.

In the framework of the “minimal” model which intends
to provide only a qualitative description, for the primary ap-
proximation it is sufficient to take into account only the
terms of the second order with respect to derivative �x.

In this case, by expanding the pseudo-differential operator
I0���� into the perturbation series I0����=1+ 1

4�2�2+ ¯


1− 1
4�2�x

2+¯ and by capturing only the terms of the sec-
ond order with respect to �, one can easily obtain the solu-
tion of Eq. �40� in the form

�A = − 
1 +
1

4
�x�

2�x + ¯ ��

and then the leading part of the Hamiltonian �41�:

H =� dx
 1

3!
��3 − �3� −

3

4!
�� − ��2�x

2� . �42�

Here we omitted the fifth order terms with respect to the
fields and the terms containing higher orders of derivatives.
The Hamiltonian H is fixed by the initial conditions and its
value can be either positive, or negative.

The corresponding equations of contour dynamics are de-
rived using Eq. �32� and have the following form in this
approximation

�t� = − �x
�H

��
= −

1

2
�x
�2 −

1

2
�� − ���x

2 +
1

2
�x�� − ��2�x� ,

�43�

�t� = �x
�H

��
= −

1

2
�x
�2 −

1

2
�� − ���x

2� . �44�

The obtained equations conserve the Hamiltonian H and the
integrals

T1 =� dx �, T2 =� dx � ,

and

P =
1

2
� dx��2 − �2� . �45�
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IV. NUMERICAL TEST

We numerically simulated the evolution of the initial per-
turbation �described by Eqs. �43� and �44�� during the forma-
tion process of the localized structure, but before nonlinear
instability arises �see discussion below�. We chose the fol-
lowing initial conditions for the surface: �=�2��−��:
��x ,0�= �1 /2��1+2 exp�−�x2 /36���, ��x ,0�=0. The results
of the test show that the initial perturbation breaks down as a
result of joint effects of nonlinearity and dispersion on the
sequence of localized structures �similar to solitons� moving
with individual constant velocities. After a while, each of the
impulses moves as a separate localized wave with its own
velocity defined by the maximum of its amplitude.

The fact that such quasilimited states are possible allows
us to consider a special class of traveling waves.

V. SOLITONS AND COMPACTONS

Let us consider the analytical solutions for Eqs. �43� and
�44� in the form of a traveling wave

� = ��s�, � = ��s�, s = x − ct ,

propagating with constant velocity c without profile defor-
mation. After the substitution of these solutions into Eqs.
�43� and �44� and the subsequent integration and simple al-
gebra, these equations attain the following form:

�3 − �3

3
+

1

4
�� − ��2�s

2 − c��2 − �2� + c1� − c2� − c3 = 0,

�46�

�2 −
1

2
�� − ���s

2 − 2c� + c2 = 0. �47�

Here, integration constants c1, c2 and c3 are specified by the
type of the solution determined by the behavior of � and � at

s→ ±�. Equations �46� and �47� can have either periodic, or
localized solutions.

In order to study the final development stage of a strongly
disturbed jet stream, such as when the jet splits into separate
vortex blobs, the solutions with compact support are the
most interesting among all solutions.

Solutions of the classical soliton type—which exponen-
tially decrease for s→ ±� and appear in the regime of un-
perturbed jet when ���s=�=1 and ���s=�=0—are realized for
the choice of constants

c1 =
1 + 2a2

12
, c2 = 0, c3 =

a2

24
, c =

2 + a2

6
.

Here, parameter a is the soliton amplitude. The image of the
jet perturbed by the soliton solution is presented in Fig. 3.

In contrast to the traditional soliton solutions, the distur-
bances called compactons �24� do not have extended “tails”
vanishing only at infinity, and as a result, do not retain the
memory about the undisturbed regime. In the framework of
the considered model, the existence of compactons can be
interpreted as the final stage of development of a strongly
nonlinear perturbation. At this stage, the jet breaks into indi-
vidual vortex blobs. For this reason, in the framework of the
considered model, compactons can serve as structures domi-
nant at the disintegration stage of the evolution of the jet
stream. The corresponding class of solutions to Eqs. �46� and
�47� is realized with parameters c1=c2=c3=0. Equations
�46� and �47� allow for solutions without exponential “tails,”
such as distributions similar to Fig. 4. In this specific case,
Eqs. �46� and �47� use parametrization

� = c�1 − cos � + 2 sin ��, � = c�1 − cos � − sin �� ,

�48�

which for 0���� /2 and, respectively, c�0, leads to equa-
tion

3

4
c�sin � + 2 cos ��2�s

2 = cos � . �49�

The behavior of functions � and � is graphically presented in
Fig. 5.

By virtue of Eq. �22�, relationship 2��−��=�2 determines
the contour profile. The compacton shape can consequently
be determined from the simple relation

�2 = 6c sin � . �50�

-10 -5 5 100
s

FIG. 3. Solitonlike perturbation on a uniformly whirling free
jet.

-1 10
s

FIG. 4. Compacton for a model of a vorticity-homogeneous
jet.

-1 1

1

2

3

ξ/c

µ/c

s

FIG. 5. Plots of functions � /c and � /c and contour �.
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Using this formula, one can easily conclude that, if the
transverse half-size of the compacton R is taken as the length
scale, in the system with scale units L=R and T=
Rc−1, the
dimensionless velocity of the compacton is constant, c
=1 /6. The dimensional compacton velocity v is obtained
from formula v=cL /T which yields

v =



6
R2,

where the transverse half-size of the compacton R serves as
the controlling parameter.

By suggesting that the maximum value �=1 is reached at
the point s=0 for �=� /2, we arrive from Eqs. �49� and �50�
to the parametric description of the compacton shape in the
form

� = sin1/2 � ,

s = ± �2�1

2
cos1/2 � + E
�

4
,2� − E
�

2
,2�	 , �51�

where E�� ,k� is the elliptic integral of the second kind.

VI. INSTABILITY OF THE COMPACTONS

Let us analyze whether the obtained solutions are stable.
This question is of particular significance because it has been
observed that localized disturbances sometimes collapse, i.e.,
form a singularity within a finite time �25,26�. This phenom-
enon can be viewed as a permanent self-constriction of a
localized disturbance which must be accompanied by the in-
finite increase in its amplitude at fixed integrals of motion.

To analyze the instability, we introduce new variables

q = � − �, z =
1

2
�� + �� ,

in terms of which the equations of contour dynamics �43�
and �44�, the Hamiltonian H, and the integral of motion P
�the latter one is particularly important� take the following
form, which is more convenient for further analysis:

�tq = − �x
�H

�z
, �tz = − �x

�H

�q
, �52�

H = I1 − I2 �53�

I1 =
1

4!
� dx�q3 + 12qz2� ,

I2 =
3

4!
� dx q2
1

2
qx + zx�2

,

P =� dx qz . �54�

Here, zx and qx are the derivatives with respect to argument
x. The equations of motion �52� for the compacton solutions

in the form of a traveling wave q=q�s�, z=z�s�, s=x−ct,
propagating with constant velocity c without profile defor-
mation, are written in the form

cq −
�H

�z
= 0, cz −

�H

�q
= 0,

which can be treated as the consequence of the variational
problem

��H − cP� = 0, �55�

where the compacton velocity c serves as a Lagrange
multiplier.

In the context of Eq. �55�, the compacton solution is an
equilibrium point in the infinite-dimensional �with respect to
parameter x� phase space of fields q and z. To determine the
type of this point �center, saddle, …� in the simplest way, let
us consider such a variation of the compacton solution q
→q�s ,� , . . . � that depends on the finite number of continu-
ous parameters �� , . . . �. and conserves the integral of motion
P. The transformation q→q�s ,� , . . . � of the compacton so-
lution makes Hamiltonian H an ordinary function of the pa-
rameters, H→H�� , . . . �. According to the general
Hamiltonian method, parameters � , . . .. can serve as the gen-
eralized coordinates with respect to which the variations in
Eq. �55� are accomplished. Our intent is to see if the station-
ary point is a saddle point in the finite-dimensional phase
space of these generalized coordinates �� , . . . �. If this is the
case, the corresponding compacton solution is unstable.

As one of such possible transformations, we consider the
transformation

q�s� →



��
q
 s

�
�, z�s� →

1


��
z
 s

�
� ,

where � and 
 are the parameters of this transformation. In
this case H→H�� ,
� on the compacton solution.

First, we consider the case with 
=1. Applying the trans-
formation to the Hamiltonian H yields

H��,1� = �−1/2I1 − �−3I2. �56�

Integrals I1 and I2 on the compacton solutions are related via
expressions

I1 + I2 = cP,
1

2
I1 − 3I2 = 0, �57�

which follow from Eq. �46� and from the equilibrium condi-
tion ��H���=0, respectively. Therefore, Hamiltonian H�� ,1�
has the form

H��,1� =
cP

7
�6�−1/2 − �−3� , �58�

where cP is positive according to the relation cP=7I2. The
plot of this function is shown in Fig. 6 �line a�. Function
H��� has no lower bound for �→0, vanishes for �→�, and
reaches its maximum at the equilibrium point �=1.
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The case with �=1 can be analyzed similarly. The plot of
function H�1,
�
H�
� is shown in Fig. 6 �line b�. Function
H�
� has no upper bound for 
→0 and 
→� and reaches
its minimum at the equilibrium point 
=1.

Thus we determined that the compacton solution is a
saddle point with Hamiltonian H�� ,
�, and therefore, this
solution is unstable. If the solution is unstable, the compac-
ton can collapse. In the next section we study such a col-
lapse.

VII. COLLAPSE GENERATED BY AN ASYMMETRICAL
MODE IN THE VORTEX SHEET DISTRIBUTION

Let us consider here a collapse generated by an asym-
metrical mode in the vortex sheet distribution. In order to
qualitatively study the evolution of the instability, we con-
struct a sample model that can be solved exactly. The deduc-
tion of such models has been conceptually formulated by
Fermi in works �3–5�. The approach is based on the method
of generalized coordinates which takes account of the ad-
vances of the variational principle.

The simplest way to formulate this principle for Eqs. �52�
is to assign variable q as a “generalized coordinate” and
introduce the so-called “generalized impulse” p using ex-
pression px=z. In terms of variables q and p, the equations of
motion become canonical, and the variational principle is
formulated in a standard way. The action is

S =� dt L ,

where the Lagrangian L is defined as

L = − H +� dx q�tp . �59�

The next step is to parameterize the generalized coordi-
nate and impulse using the so-called test functions. Follow-
ing the method described in the previous section, we employ
the two-parameter transformation that conserve the integral
of motion P. We consider a combination of scale and gradi-
ent transformations �29�

q → �−1q
 x

�
�, z → z
 x

�
� + ���xq
 x

�
� . �60�

Here, � and � are parameters of the transformations.
The choice of transformation �60� as the starting point for

the parameterization is motivated by the following reasons.
First, the transformation �60� leaves the integral of motion,
P, invariant. Second, it does not change integral �30�

I =� dx q =
1

2
� dx �2,

and finally, the gradient correction can be interpreted as an
asymmetrical mode excitation at the free boundary of the
vortex sheet. In essence, such a correction is based on the
assumption that the fundamental cause of compacton insta-
bility is the presence of the vortex sheet which, as known
�14�, is characterized by an extremely high instability and
has a tendency to lose smoothness and to roll up during the
evolution.

Now, we suppose that the parameters of transformation, �
and �, depend on time. We choose as the compacton solu-
tions those functions of q, p that appear in the right-hand
side of Eq. �60�. The function on the left-hand side of Eq.
�60� is called a trial function.

Substitution of the trial functions into Eqs. �59� and inte-
gration lead us to a discrete model with generalized coordi-
nates �, � and the Lagrangian �31�

L =
d�

dt
� − H ,

where value H is playing the part of the Hamiltonian for this
discrete model and is determined by expression

H = �H��,�� .

Here, �−1= 1
2 �ds q2 is a numerical coefficient and H�� ,�� is

the Hamiltonian of the initial model calculated using the trial
functions.

We calculate the Hamiltonian, using the following pro-
cess. First we substitute compacton solution �48�–�51� into
Eqs. �53� and �54�. Because the solution is dimensionless,
calculations of H, I1, I2, and P �i.e., the integrals of elliptical
functions� are done numerically and produce numerical val-
ues for H, I1, I2, and P. Then we take expressions �60� and
�48�–�51� and substitute them one more time into Eqs. �53�
and �54�. In this second substitution, the form of the trans-
formation allows us to redefine the integration variables and
take parameters � and � outside the integration sign. By
combining all expressions �including the calculated values
H, I1, I2, and P�, we can find that the Hamiltonian of the
chosen discrete model, H, is defined by the expression

H = �0.213 − 0.053�−3��2 + �0.221�−2 − 0.040�−3

− 0.052�−4 − 0.023�−5� .

The leading terms which define the dynamical system behav-
ior near the point of collapse t= t0 are the first two terms. For
this reason, to study the system qualitatively we consider a
“truncated” Hamiltonian

1 2
0

1

a

b

α

H

cP

β

FIG. 6. Compacton Hamiltonian as a function of the transfor-
mation parameters �a� � and �b� 
.
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H̃ � 
B −
C

�3��2

for which the “truncated” equations of motion have the fol-
lowing form:

d�

dt
=

�H̃
��

= 2�
B −
C

�3�,
d�

dt
= −

�H̃
��

= − 3C
�2

�4 .

Since for t→ t0, the leading terms have to balance, we
obtain that ���t0− t�−1 and �→�0. The equality B=C /�0

3 is
thus satisfied for t→ t0. This also allows us to find the limit
value of the parameter � �which is responsible for the scale
transformation�: �0= �C /B�1/3=0.630. It is now possible to
write the approximate equations for � near the point of col-
lapse where �=�0+�� ��� represents a small perturbation�

d��

dt
= 6B�0

−1���,
d�

dt
= − 3B�0

−1�2.

The solutions, obviously, have the power dependency with
respect to t as

� � �t0 − t�−1, �� � �t0 − t�2.

These solutions describe the collapse scenario generated
by an asymmetrical mode on a free boundary of a vortex
sheet.

VIII. SELF-SIMILAR COLLAPSE

In order to investigate the final stage of the development
of the instability development, we consider a self-similar col-
lapse scenario, suggesting that near the collapse point t= t0,
i.e., when t→ t0, the leading terms are

q � Q�x − ct�, z � �t0 − t�−1Z�x − ct� . �61�

Here, c is the disturbance propagation velocity. The solutions
given by Eqs. �61� describe the collapse regime generated at
the free boundary by the asymmetric mode in the vortex
sheet distribution.

Let us move into the comoving reference frame s=x−ct.
Since this transition is accompanied by transformation H
→H+cP, the Hamiltonian given by Eq. �53� takes form

H = I1 − I2 + cP

=
1

2
� ds�2cqz + qz2 +

1

12
q3 −

1

4
q2
1

2
qs + zs�2	 .

�62�

Here, zs and qs are the derivatives with respect to argument s.
By assuming that near the collapse point, according to Eq.
�61�, the terms highest in order with respect to z make most
contribution, and by omitting less significant terms in Eq.
�62�, we obtain the truncated Hamiltonian

Htr �
1

2
� ds�qz2 −

1

4
q2zs

2	 .

The equations of motion corresponding to the Hamil-
tonian Htr have form

�tq = − �s
�Htr

�z
= − �s�qz +

1

4
�s�q2zs�	 , �63�

�tz = �s
�Htr

�q
= �s�1

2
z2 −

1

4
qzs

2	 . �64�

Substitution of Eq. �61� into Eqs. �63� and �64� yields the
following equations for the structure functions Q and Z:

QZ � −
1

4
�s�Q2Zs� , �65�

Z�1 + Zs� �
1

4
�s�QZs

2� . �66�

These equations produce the integral

Q2Zs�3Zs + 2� = C ,

and, consequently, their only regular solution is

Q = b2 − s2, Z = −
2

3
s , �67�

which corresponds to the choice C=0 and is localized in the
interval −b�s� +b.

Discussion of other �singular� solutions, which can also
be of interest, is beyond the scope of this work.

It is worth noting that conditions Htr=0, P=0, and T1=
−T2=const are automatically valid on self-similar expression
�61�. Thus, these self-similar solutions do not violate the
conservation laws and do correspond to the weak-collapse
scenario.

The structure function Q characterizes the shape of the
disturbance, and thus it characterizes the distribution of the
self-similar component of the vortex sheet. It is easily seen
from Eq. �67� that the disturbance at the selfsimilar stage is
an oblate ellipsoid with the ratio of semiaxes a /b=�2. The
semiaxes of the ellipsoid �longitudinal b and transversal a�
can be calculated using the conservation law

I =� dx q =
4

3
b3.

In particular, if the initial state is a compacton, I=1.09 and,
therefore, b=0.93 and a=1.32. The asymmetric mode of the
vortex sheet is intensified with time on the surface of this
ellipsoid according to the law �t0− t�−1 and with distribution
z=− 2

3s.

IX. CONCLUSION

Hydrodynamic mixing in stratified media is a complex
process. We analyzed the general picture of fluid evolution
by applying the Hamiltonian approach to a system with a
continual number of degrees of freedom. We formulated the
Hamiltonian version of contour dynamics for a model of
axially symmetric, equally vortexed jet streams with a free
boundary. In order to grasp the tendency of the processes, we
parametrized �in the spirit of the idea of Fermi� the exact
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Hamiltonian by a finite number of trial parameters �general-
ized coordinates�. In particular, we studied the evolution and
collapse of dominant structures �compactons� which appear
in strongly perturbed jet streams at the stage of their decay.

Our study showed that the evolution of the equally vor-
texed jet streams with the Atwood number close to 1 �large
density contrast at the interface� may lead to breaking of the
jet into separate vortex blobs �compactons�. The approach
presented above made it possible to determine the shape of
these structures and to analyze the mechanism of their insta-
bility. We found that when compacton collapse occurred due
to generation of an asymmetric mode on the vortex sheet, the
compacton shape did not get distorted. The scale transforma-
tion parameter in the model stopped at the value �0=0.630
indicating that the transverse size of the compacton increased
by a factor of 1.26, while the longitudinal contracted along
the x axis by a factor of 1.59. No further change of compac-
ton shape occurred. In essence, the collapse effect was con-
densed into an increase of intensity � of the vortex sheet
according to the law ���t0− t�−1. More detailed calculations
should reveal the same tendency, but may be much more
complex and subject to potential noise that should be care-
fully eliminated.

In conclusion, we want to emphasize that such simplified
models should not be interpreted as producing the final an-
swer. They are useful only as effective means for capturing
the tendency of the processes. The key idea, as formulated by
Fermi, is that the physics even of a complex hydrodynamical
phenomenon can often be understood and described by a
qualitative model with a small number of parameters.
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APPENDIX A: POISSON BRACKETS FOR AN
INCOMPRESSIBLE NONUNIFORM EULERIAN FLUID

The equations of motion �in Cartesian coordinates� for a
nonuniform incompressible �� jv j =0� fluid are formulated in
terms of the Eulerian variables: mass density �, velocity v
and pressure p as

�tvi + vk�kvi = −
1

�
�ip +

1

�
f i, �A1�

�t� + vk�k� = 0, �A2�

�kvk = 0, �A3�

where f is the resultant of exterior forces that do not violate
conservativeness of the fluid. This means that equations of

motion �A1�–�A3� preserve the total energy, H, given by the
sum of the kinetic, T, and potential, U, energy of the fluid
given by

H = T + U ,

T =� dx�
v2

2
, U = U��� , �A4�

where U is, in general, an arbitrary functional of density �.
For simplicity, we assume that the fluid is unbounded.

The evolution equation for the momentum density �
=�v can be found as follows. Using Eqs. �A1� and �A2�
leads us to

�t�i + vk��k�i − �i�k� = − �i
p + �
v2

2
� +

v2

2
�i� + f i.

�A5�

By taking the curl of Eq. �A5�, and thereby eliminating the
gradient term with pressure, we obtain equation

�t�i = eimn�m�enklvk�l −
v2

2
�n� + fn	 , �A6�

which describes the evolution law for the vorticity of mo-
mentum density �=��� under the action of exterior con-
servative forces.

We now show that the equations of motion for an incom-
pressible inhomogeneous fluid reformulated in terms of the
momentum density vorticity are described by the Hamil-
tonian with the local Poisson brackets ��i ,�k�� and �� ,�k��
�28,27�.

First, we compute the Poisson bracket �� ,�k��. Because the
model is expected to be Hamiltonian, we have every reason
to write

�t� = ��,H� =� dx����,�k��
�T

��k�
+ ��,���

�U

���
	 . �A7�

The comparison of Eq. �A7� with the continuity condition
�A2� leads us to

� dx����,�k��
�T

��k�
+ ��,���

�U

���
	 + vk�k� = 0. �A8�

We next introduce a local term in the integrand by using
�-function, and express the velocity components vl in terms
of the functional derivatives �T /��k as

vl =
�T

��l
=� dx�

�T

��k�

��k�

��l
= elki�k

�T

��i
, �A9�

which can be directly obtained from Eq. �A4�. Upon integrat-
ing by parts and after some algebra in Eq. �A8�, we obtain

� dx�
�T

��k�
���,�k�� − ekml�l��m��x − x��� +� dx���,���

�U

���

= 0.

This implies that

��,�k�� = ekml�l��m��x − x��, ��,��� = 0. �A10�
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Now we need to compute the Poisson bracket ��i ,�k��. By
using the same reasoning as with the density, we can write
the equation of motion for the vorticity of momentum den-
sity, �, as

�t�i = ��i,H� =� dx����i,�k��
�T

��k�
+ ��i,���

�T

���
	 + ��i,U� .

�A11�

With bracket �� ,�k�� already computed and

�T

��
=

1

2
vk

2,

Eq. �A11� can be rewritten as

�t�i =� dx���i,�k��
�T

��k�
− eiml�m
1

2
vk

2�l�� + ��i,U� .

�A12�

By comparing Eqs. �A12� with Eq. �A6�, we obtain

� dx���i,�k��
�T

��k�
− eimn�m�enklvk�l� + ��i,U� − eimn�mfn = 0.

If we introduce the local term eimn�m�enklvk�l� into the inte-
gral using �-function and replace velocity components vl in
accordance with Eq. �A9�, we obtain, after integration by
parts, that

� dx�
�T

��k�
���i,�k�� − eipjejlnekmn�p�l�m��x − x��� + ��i,U�

− eimn�mfn = 0.

This immediately implies that the Poisson bracket for vector
field � and the relation between the exterior force and the
potential energy are given by

��i,�k�� = eipjejlnekmn�p�l�m� , �A13�

��i,U� = eimn�mfn. �A14�

We note that the resulting force f can be found from Eq.
�A14� up to a gradient term. This fact is a consequence of the
invariance of the equations of motion �A1�–�A3� under the
transformation p→p+�, f i→ f i−�i�, where � is an arbi-
trary function whose choice has no influence on physical
implications of the theory. Thus it follows from Eq. �A14�
that no structure other than f i=�i��U /��� is admissible to
serve as an external force in the case where U=U���.

By collecting Eqs. �A10� and �A13�, we find the complete
system of Poisson brackets in the phase space �� ,��:

��,��� = 0, �A15�

��,�k�� = ekml�l��m� , �A16�

��i,�k�� = eipjejlnekmn�p�l�m� . �A17�

Therefore, the equations of motion for an incompressible
nonuniform fluid corresponding to these Poisson brackets,
take form

�t� = ��,H� = � � 
��,� �
�H

��
	 +

�H

��
� �� , �A18�

�t� = ��,H� = − 
� �
�H

��
� � � . �A19�

Equations �A15�–�A19� may be used as the fundamental
principle in constructing a hierarchy of reduced Poisson
brackets for various models of contour dynamics.

APPENDIX B: HAMILTONIAN VERSION OF CONTOUR
DYNAMICS IN 2D PLANE

We consider a two-dimensional plane flow where the curl
of the momentum is normal to the flow plane and hence has
the only component:

� = �0,0,��, � = �ik�i�k, �B1�

where �ik is the unit antisymmetric tensor of the second rank
�with �12=1�. In this case the Poisson brackets �A15�–�A17�
for an incompressible inhomogeneous fluid can be reformu-
lated for the dynamical variables �, � as

��,��� = 0, �B2�

��,��� = �ki�i��k��x − x�� , �B3�

��,��� = �ki�i��k��x − x�� . �B4�

It is well known that two-dimensional dynamics of
patches of constant vorticity and density can be reduced to
dynamics of their contours, while ignoring the description of
the rest of the fluid. However, it is a nontrivial fact that the
description of the contour evolution can take various forms
depending on the variables used; this deserves attention from
both practical and theoretical standpoints.

For simplicity, we consider a single domain G+ bounded
by a closed fluid contour that separates it from the rest of the
fluid in an exterior region G−. By denoting the vorticity and
the density inside and outside the contour as 
+, �+, and 
−,
�−, we use the respective � and � superscripts to label vari-
ables in the internal domain G+ and in the exterior region G−.
Using this notation, momentum and mass density can be
written as

� = �+v+�+ + �−v−�−, � = �+�+ + �−�−. �B5�

where �+ and �− are mutually-complementary substantive
functions defined as

�+ = �1, if x � G+,

0, if x � G−,
� �− = �1, if x � G−,

0, if x � G+,
�

such that

�+ + �− = 1, �+�− = 0. �B6�

We note that a substantive �-function characterizing a fluid
domain, by definition, has dynamical property:

�t� + vk�k� = 0,

which implies that the corresponding domain moves together
with the fluid.
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Inserting �-representation �B5� into Eq. �B1� yields

� = �+
+�+ − �−
−�− + 
 , �B7�

where variable 
 can be expressed as


 = ��+vk
+ − �−vk

−��ik�i�
+. �B8�

It is easily seen that 
 has �-functional character and thus
describes a vortex sheet whose density is specified by the
jump of the tangential momentum across the contour.

As the first step, we transform Poisson brackets
�B2�–�B4� from the phase space �� ,�� into the space of dy-
namical variables �
 ,�+�. In accordance with Eqs.
�B5�–�B7�, we have

� = �− + ��+ − �−��+, �B9�

� = �−
− + ��+
+ − �−
−��+ + 
 . �B10�

Depending on the existence �or the absence� of the mass
density jump across the contour, substitution of Eqs. �B9�
and �B10� into Eqs. �B2�–�B4� leads to two possible types of
Poisson brackets. The detailed consideration of piecewise-
constant plane vortex models without ��+=�−� and with ��+

��−� jumps of mass density is provided in works �15,16�.

APPENDIX C: COVARIANT FORMULATION

Description of the contour evolution can be complicated
by a poor choice of generalized coordinates. When hydrody-
namical motions possess some spatial symmetry, it is rational
to use curvilinear coordinates corresponding to this symme-
try. Therefore, in the context of our paper, we use as an
example cylindrical coordinates x ,r ,�, and consider the
Hamiltonian formulation that is independent of the choice of
the coordinate frame of reference. The transformation of hy-
drodynamic equations of motion are transformed from one of
coordinate system into the other is accomplished in the
framework of Poisson brackets transformations.

Let us now give a covariant formulation of expressions

��,��� = 0, �C1�

��,�k�� = ekml�l��m��x − x�� , �C2�

��i,�k�� = eipjejlnekmn�p�l�m��x − x�� , �C3�

which has been previously written in the Cartesian coordi-
nates.

We introduce curvilinear coordinates �= ��1 ,�2 ,�3� con-
sidered to be functions of Cartesian coordinates, supposing
that a one-to-one transformation exists

x = x��� � � = ��x� . �C4�

It is well-known that covariant and contravariant metric
tensors are defined by expressions

gik =
�xl

��i

�xl

��k , � gik =
��i

�xl

��k

�xl .

The rules of scalar and vector quantity modifications un-
der such transformations �C4� are as follows:

f��� =� dx f�x��„x − x���… , �C5�

uk��� =� dx
��k

�xi ui�x��„x − x���… , �C6�

uk��� = gkmum��� =� dx
�xi

��kui�x��„x − x���… . �C7�

To be practical, these rules are completed by the basic
identity

eiml��k

�xi

��p

�xm

��n

�xl 
 g−1/2ekpn, �C8�

from which it follows that

��k

�xi eiml 
 g−1/2ekpn�xm

��p

�xl

��n , �C9�

eiml��k

�xi

��p

�xm 
 g−1/2ekpn �xl

��n , �C10�

where eikj 
eikj is the completely anti-symmetrical tensor,
known as Levi-Civitta tensor, �eikj =eikj =1, when ikj
=123,231,312; eikj =eikj =−1, when ikj=321,132,213; and
eikj =eikj =0, when any two indices are equal�. Keeping in
mind Eq. �C6�, let us note that identity �C8� is the transfor-
mation of tensor eikj upon transformation �C4�.

In particular, Eqs. �C5� and �C6� give the following ex-
pressions for density � and vorticity component �i of a hy-
drodynamic momentum in curvilinear coordinates:

���� =� dx ��x��„x − x���… , �C11�

�k��� =� dx
��k

�xi �i�x��„x − x���… . �C12�

Using the definition for �=rot� in Cartesian coordinates,
we can now easily find from Eq. �C12� that the covariant
generalization of this expression in curvilinear coordinates is

�k��� =� dx
��k

�xi eiml ��l

�xm�„x − x���… = g−1/2ekpn��n

��p .

�C13�

Here, g is determinant of the metric tensor, and �n���
=�un��� are covariant components of the hydrodynamical
moment in curvilinear coordinates �.

A covariant generalization for the Poisson brackets
�C1�–�C3� may be found, using Eqs. �C11� and �C12�, from
the following commutative relations:

�����,������ =� dx dx����x�,��x�����x − x�����„x� − x����… ,

�C14�
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�����,�k����� =� dx dx�
���k

�x�m ���x�,�m�x����„x − x���…

��„x� − x����… , �C15�

��i���,�k����� =� dx dx�
��i

�xn

���k

�x�m ��n�x�,�m�x���

��„x − x���…�„x� − x����… . �C16�

By putting Eqs. �C1�–�C3� for brackets �which are under
the integral signs�, and by using the formulas

��i

�xnenpj �

�xp = g−1/2eipn �xj

��n

�

��p ,

ejtl
�xj

��n

�xt

��s = g1/2ensj
�� j

�xl ,

which follow immediately from Eq. �C9� and �C10�, after
some transformations we obtain that

��i���,�k����� =� dx dx�
��i

�xn

���k

�x�menpjejlte
mts

�
�

�xp
�l �

�xs��x − x����„x − x���…

��„x� − x����…

= g−1/2eipnejsneksm �

��p
� j
�

��mg1/2��� − ���� .

�C17�

Ultimately, the Poisson brackets for contravariant compo-
nents �k and density � are found from the brackets �C1�–�C3�
as a result of the coordinate transformation �C4�

�����,������ = 0, �C18�

�����,�k����� = g−1/2eknm �

��m�
�

��ng−1/2��� − ��� ,

�C19�

��i���,�k����� = g−1/2eipjejlneknm �

��p�l �

��mg−1/2��� − ��� .

�C20�

The derived Poisson brackets �C1�–�C3� and their covari-
ant analog �C18�–�C20� can be used in various versions of
the Hamiltonian description of the contour dynamics models.

APPENDIX D: HAMILTONIAN FOR NONPLANAR
MODELS OF CONTOUR DYNAMICS

For the models of incompressible inhomogeneous fluid,
the Hamiltonian is usually chosen a priori as the kinetic en-
ergy of the flow:

H =
1

2
� d� g1/2�vivi. �D1�

In one Hamiltonian version of contour dynamics, it is rea-
sonable to express this integral in terms of dynamic variables
which are defined on the contour.

With this purpose, we use the incompressibility condition
as the first step

�

��i �g
1/2vi� = 0. �D2�

The stream function, � �a vector variable, i.e., a vector po-
tential�, which is connected with covariant components of
velocity, is introduced by the following relationship

vi = − g−1/2eikn��n

��k . �D3�

If we substitute Eq. �D2� into Eq. �D1� and integrate in
parts, we find that the Hamiltonian, H, can be expressed in
terms of vorticity �=rot �vof the hydrodynamical moment
and stream function � as

H = −
1

2
� d� g1/2�i�i.

We assume now that in the chosen curvilinear system of
coordinates, vector fields � and � have nonzero only the
third components, �3=� and �3=�. In this case, we come to
the expression

H = −
1

2
� d�1d�2g1/2�� . �D4�

Here, �1 and �2 are the corresponding curvilinear coordi-
nates, and � is expressed via � using Eq. �8�.
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